
21

Abstract

The choice of study design often has profound consequences for the causal interpretation of study 
results. The objective of this chapter is to provide an overview of various study design options for 
nonexperimental comparative effectiveness research (CER), with their relative advantages and limitations, 
and to provide information to guide the selection of an appropriate study design for a research question 
of interest. We begin the chapter by reviewing the potential for bias in nonexperimental studies and the 
central assumption needed for nonexperimental CER—that treatment groups compared have the same 
underlying risk for the outcome within subgroups definable by measured covariates (i.e., that there is no 
unmeasured confounding). We then describe commonly used cohort and case-control study designs, along 
with other designs relevant to CER such as case-cohort designs (selecting a random sample of the cohort 
and all cases), case-crossover designs (using prior exposure history of cases as their own controls), case–
time controlled designs (dividing the case-crossover odds ratio by the equivalent odds ratio estimated in 
controls to account for calendar time trends), and self-controlled case series (estimating the immediate 
effect of treatment in those treated at least once). Selecting the appropriate data source, patient population, 
inclusion/exclusion criteria, and comparators are discussed as critical design considerations. We also 
describe the employment of a “new user” design, which allows adjustment for confounding at treatment 
initiation without the concern of mixing confounding with selection bias during followup, and discuss 
the means of recognizing and avoiding immortal-time bias, which is introduced by defining the exposure 
during the followup time versus the time prior to followup. The chapter concludes with a checklist for 
the development of the study design section of a CER protocol, emphasizing the provision of a rationale 
for study design selection and the need for clear definitions of inclusion/exclusion criteria, exposures 
(treatments), outcomes, confounders, and start of followup or risk period.
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Introduction

The objective of this chapter is to provide an 
overview of various study design options for 
nonexperimental comparative effectiveness research 
(CER), with their relative advantages and limitations. 
Of the multitude of epidemiologic design options, 
we will focus on observational designs that compare 
two or more treatment options with respect to an 
outcome of interest in which treatments are not 
assigned by the investigator but according to routine 
medical practice. We will not cover experimental or 
quasi-experimental designs, such as interrupted time 

series,1 designed delays,2 cluster randomized trials, 
individually randomized trials, pragmatic trials, or 
adaptive trials. These designs also have important 
roles in CER; however, the focus of this guide is on 
nonexperimental approaches that directly compare 
treatment options. 

The choice of study design often has profound 
consequences for the causal interpretation of study 
results that are irreversible in many settings. Study 
design decisions must therefore be considered 
even more carefully than analytic decisions, which 
often can be changed and adapted at later stages 
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of the research project. Those unfamiliar with 
nonexperimental design options are thus strongly 
encouraged to involve experts in the design of 
nonexperimental treatment comparisons, such 
as epidemiologists, especially ones familiar 
with comparing medical treatments (e.g., 
pharmacoepidemiologists), during the planning 
stage of a CER study and throughout the project. 
In the planning stage of a CER study, researchers 
need to determine whether the research question 
should be studied using nonexperimental 
or experimental methods (or a combination 
thereof, e.g., two-stage RCTs).3-4 Feasibility 
may determine whether an experimental or a 
nonexperimental design is most suitable, and 
situations may arise where neither approach is 
feasible.

Issues of Bias in 
Observational CER

In observational CER, the exposures or treatments 
are not assigned by the investigator but rather by 
mechanisms of routine practice. Although the 
investigator can (and should) speculate on the 
treatment assignment process or mechanism, the 
actual process will be unknown to the investigator. 
The nonrandom nature of treatment assignment 
leads to the major challenge in nonexperimental 
CER studies, that of ensuring internal validity. 
Internal validity is defined as the absence of bias; 
biases may be broadly classified as selection 
bias, information bias, and confounding bias. 
Epidemiology has advanced our thinking about 
these biases for more than 100 years, and many 
papers have been published describing the 
underlying concepts and approaches to bias 
reduction. For a comprehensive description and 
definition of these biases, we suggest the book 
Modern Epidemiology.5 Ensuring a study’s internal 
validity is a prerequisite for its external validity 
or generalizability. The limited generalizability of 
findings from randomized controlled trials (RCTs), 
such as to older adults, patients with comorbidities 
or comedications, is one of the major drivers for 
the conduct of nonexperimental CER.

The central assumption needed for 
nonexperimental CER is that the treatment groups 
compared have the same underlying risk for the 
outcome within subgroups definable by measured 

covariates. Until recently, this “no unmeasured 
confounding” assumption was deemed plausible 
only for unintended (usually adverse) effects 
of medical interventions, that is, for safety 
studies. The assumption was considered to be 
less plausible for intended effects of medical 
interventions (effectiveness) because of intractable 
confounding by indication.6-7 Confounding by 
indication leads to higher propensity for treatment 
or more intensive treatment in those with the 
most severe disease. A typical example would be 
a study on the effects of beta-agonists on asthma 
mortality in patients with asthma. The association 
between treatment (intensity) with beta-agonists 
and asthma mortality would be confounded by 
asthma severity. The direction of the confounding 
by asthma severity would tend to make the drug 
look bad (as if it is “causing” mortality). The study 
design challenge in this example would not be the 
confounding itself, but the fact that it is hard to 
control for asthma severity because it is difficult 
to measure precisely. Confounding by frailty has 
been identified as another potential bias when 
assessing preventive treatments in population-
based studies, particularly those among older 
adults.8-11 Because frail persons (those close to 
death) are less likely to be treated with a multitude 
of preventive treatments,8 frailty would lead to 
confounding, which would bias the association 
between preventive treatments and outcomes 
associated with frailty (e.g., mortality). Since 
the bias would be that the untreated cohort has 
a higher mortality irrespective of the treatment, 
this would make the drug’s effectiveness look too 
good. Here again the crux of the problem is that 
frailty is hard to control for because it is difficult 
to measure.

Basic Epidemiologic Study 
Designs

The general principle of epidemiologic study 
designs is to compare the distribution of the 
outcome of interest in groups characterized by the 
exposure/treatment/intervention of interest. The 
association between the exposure and outcome 
is then assessed using measures of association. 
The causal interpretation of these associations 
is dependent on additional assumptions, most 
notably that the risk for the outcome is the same 
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in all treatment groups compared (before they 
receive the respective treatments), also called 
exchangeability.12-13 Additional assumptions 
for a causal interpretation, starting with the Hill 
criteria,14 are beyond the scope of this chapter, 
although most of these are relevant to many CER 
settings. For situations where treatment effects are 
heterogeneous, see chapter 3. 

The basic epidemiologic study designs are 
usually defined by whether study participants are 
sampled based on their exposure or outcome of 
interest. In a cross-sectional study, participants are 
sampled independent of exposure and outcome, 
and prevalence of exposure and outcome are 
assessed at the same point in time. In cohort 
studies, participants are sampled according to their 

exposures and followed over time for the incidence 
of outcomes. In case-control studies, cases and 
controls are sampled based on the outcome of 
interest, and the prevalence of exposure in these 
two groups is then compared. Because the cross-
sectional study design usually does not allow 
the investigator to define whether the exposure 
preceded the outcome, one of the prerequisites for 
a causal interpretation, we will focus on cohort 
and case-control studies as well as some more 
advanced designs with specific relevance to CER.

Definitions of some common epidemiologic 
terms are presented in Table 2.1. Given the space 
constraints and the intended audience, these 
definitions do not capture all nuances. 

Table 2.1. Definition of epidemiologic terms

Term Definition Comments

Incidence Occurrence of the disease outcome over a 
specified time period. Incidence is generally 
assessed as a risk/proportion over a fixed 
time period (e.g., risk for 1-year mortality) 
or as a rate defined by persons and time 
(e.g., mortality rate per person-year). 
Incidence is often defined as first occurrence 
of the outcome of interest, a definition that 
requires prior absence of the outcome.

Etiologic studies are based on incidence 
of the outcome of interest rather than 
prevalence, because prevalence is a function 
of disease incidence and duration of disease.

Prevalence Proportion of persons with the exposure/
outcome at a specific point in time. 

Because prevalence is a function of the 
incidence and the mean duration of the 
disease, incidence is generally used to study 
etiology.

Measures of 
association

Measures needed to compare outcomes 
across treatment groups. The main 
epidemiologic measures of association are 
ratio measures (risk ratio, incidence rate 
ratio, odds ratio, hazard ratio) and difference 
measures (risk difference, incidence rate 
difference).

Difference measures have some very 
specific advantages over ratio measures, 
including the possibility of calculating 
numbers needed to treat (or harm) and the 
fact that they provide a biologically more 
meaningful scale to assess heterogeneity.5 
Ratio measures nevertheless abound 
in medical research. All measures of 
association should be accompanied by a 
measure of precision, e.g., a confidence 
interval.

Confounding Mixing of effects. The effect of the 
treatments is mixed, with the effect of the 
underlying risk for the outcome being 
different in the treatment groups compared.

Confounding leads to biased treatment 
effect estimates unless controlled for 
by design (randomization, matching, 
restriction) or analysis (stratification, 
multivariable models).
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Table 2.1. Definition of epidemiologic terms (continued)

Term Definition Comments

Selection bias Distortion of treatment effect estimate as a 
result of procedures used to select subjects, 
and distortion of factors that influence study 
participation. 

While procedures to select subjects 
usually lead to confounding that can be 
controlled for, factors affecting study 
participation cannot be controlled for. 
Factors affecting study participation are 
referred to as selection bias throughout this 
chapter to differentiate selection bias from 
confounding.

Information bias Distortion of treatment effect estimate as a 
result of measurement error in any variable 
used in a study; i.e., exposure, confounder, 
outcome.

Often measurement error is used for 
continuous variables, and misclassification 
for categorical variables. It is important to 
separate nondifferential from differential 
measurement error. Nondifferential 
measurement error in exposures and 
outcomes tends to bias treatment effect 
estimates towards the null (no effect); 
nondifferential measurement error in 
confounders leads to residual confounding 
(in any direction); differential measurement 
error leads to bias in any direction.

Cohort Study Design 

Description

Cohorts are defined by their exposure at a certain 
point in time (baseline date) and are followed 
over time after baseline for the occurrence of the 
outcome. For the usual study of first occurrence 
of outcomes, cohort members with the outcome 
prevalent at baseline need to be excluded. Cohort 
entry (baseline) is ideally defined by a meaningful 
event (e.g., initiation of treatment; see the section 
on new user design) rather than convenience 
(prevalence of treatment), although this may not 
always be feasible or desirable.

Advantages

The main advantage of the cohort design is 
that it has a clear timeline separating potential 
confounders from the exposure and the exposure 
from the outcome. Cohorts allow the estimation 
of actual incidence (risk or rate) in all treatment 
groups and thus the estimation of risk or rate 
differences. Cohort studies allow investigators to 
assess multiple outcomes from given treatments. 
The cohort design is also easy to conceptualize and 
readily compared to the RCT, a design with which 
most medical researchers are very familiar.

Limitations

If participants need to be recruited and followed 
over time for the incidence of the outcome, the 
cohort design quickly becomes inefficient when the 
incidence of the outcome is low. This limitation has 
led to the widespread use of case-control designs 
(see below) in pharmacoepidemiologic studies 
using large automated databases. With the IT 
revolution over the past 10 years, lack of efficiency 
is rarely, if ever, a reason not to implement a cohort 
study even in the largest health care databases if all 
the data have already been collected.

Important Considerations

Patients can only be excluded from the cohort 
based on information available at start of followup 
(baseline). Any exclusion of cohort members based 
on information accruing during followup, including 
treatment changes, has a strong potential to 
introduce bias. The idea to have a “clean” treatment 
group usually introduces selection bias, such as 
by removing the sickest, those with treatment 
failure, or those with adverse events, from the 
cohort. The fundamental principle of the cohort 
is the enumeration of people at baseline (based 
on inclusion and exclusion criteria) and reporting 
losses to followup for everyone enrolled at baseline. 
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Clinical researchers may also be tempted to assess 
the treatments during the same time period the 
outcome is assessed (i.e., during followup) instead 
of prior to followup. Another fundamental of the 
cohort design is, however, that the exposure is 
assessed prior to the assessment of the outcome, 
thus limiting the potential for incorrect causal 
inference if the outcome also influences the 
likelihood of exposure. This general principle also 
applies to time-varying treatments for which the 
followup time needs to start anew after treatment 
changes rather than from baseline. 

Cadarette et al.15 employed a cohort design to 
investigate the comparative effectiveness of four 
alternative treatments to prevent osteoporotic 
fractures. The four cohorts were defined by the 
initiation of the four respective treatments (the 
baseline date). Cohorts were followed from 
baseline to the first occurrence of a fracture at 
various sites. To minimize bias, statistical analyses 
adjusted for risk factors for fractures assessed at 
baseline. As discussed, the cohort design provided 
a clear timeline, differentiating exposure from 
potential confounders and the outcomes. 

Case-Control Study Design

Description

Nested within an underlying cohort, the case-
control design identifies all incident cases that 
develop the outcome of interest and compares 
their exposure history with the exposure history of 
controls sampled at random from everyone within 
the cohort still at risk for developing the outcome 
of interest. Given proper sampling of controls 
from the risk set, the estimation of the odds ratio 
in a case-control study is a computationally more 
efficient way to estimate the otherwise identical 
incidence rate ratio in the underlying cohort.

Advantages

The oversampling of persons with the outcome 
increases efficiency compared with the full 
underlying cohort. As outlined above, this 
efficiency advantage is of minor importance 
in many CER settings. Efficiency is of major 
importance, however, if additional data (e.g., blood 
levels, biologic materials, validation data) need to 
be collected. It is straightforward to assess multiple 
exposures, although this will quickly become 
very complicated when implementing a new user 
design. 

Limitations

The case-control study is difficult to conceptualize. 
Some researchers do not understand, for example, 
that matching does not control for confounding in 
a case-control study, whereas it does in a cohort 
study.16 Unless additional information from 
the underlying cohort is available, risk or rate 
differences cannot be estimated from case-control 
studies. Because the timing between potential 
confounders and the treatments is often not taken 
into account, current implementations of the case-
control design assessing confounders at the index 
date rather than prior to treatment initiation will be 
biased when controlling for covariates that may be 
affected by prior treatment. Thus, implementing 
a new user design with proper definition of 
confounders will often be difficult, although not 
impossible. If information on treatments needs 
to be obtained retrospectively, such as from an 
interview with study participants identified as 
cases and controls, there is the potential that 
treatments will be assessed differently for cases 
and controls, which will lead to bias (often referred 
to as recall bias).

Important Considerations

Controls need to be sampled from the “risk set,” 
i.e., all patients from the underlying cohort who 
remain at risk for the outcome at the time a case 
occurs. Sampling of controls from all those who 
enter the cohort (i.e., at baseline) may lead to 
biased estimates of treatment effects if treatments 
are associated with loss to followup or mortality. 
Matching on confounders can improve the 
efficiency of estimation of treatment effects, but 
does not control for confounding in case-control 
studies. Matching should only be considered for 
strong risk factors for the outcome; however, the 
often small gain in efficiency must be weighed 
against the loss of the ability to estimate the effect 
of the matching variable on the outcome (which 
could, for example, be used as a positive control to 
show content validity of an outcome definition).17 
Matching on factors strongly associated with 
treatment often reduces efficiency of case-control 
studies (overmatching). Generally speaking, 
matching should not routinely be performed in 
case-control studies but be carefully considered, 
ideally after some study of the expected efficiency 
gains.16, 18
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Martinez et al.19 conducted a case-control study 
employing a new user design. The investigators 
compared venlafaxine and other antidepressants 
and risk of sudden cardiac death or near death. An 
existing cohort of new users of antidepressants 
was identified. (“New users” were defined as 
subjects without a prescription for the medication 
in the year prior to cohort entry). Nested 
within the underlying cohort, cases and up to 
30 randomly selected matched controls were 
identified. Potential controls were assigned an 
“index date” corresponding to the same followup 
time to event as the matched case. Controls were 
only sampled from the “risk set.” That is, controls 
had to be at risk for the outcome on their index 
date, thus ensuring that bias was not introduced 
via the sampling scheme.

Case-Cohort Study Design

In the case-cohort design, cohorts are defined 
as in a cohort study, and all cohort members 
are followed for the incidence of the outcomes. 
Additional information required for analysis 
(e.g., blood levels, biologic materials for genetic 
analyses) is collected for a random sample of the 
cohort and for all cases. (Note that the random 
sample may contain cases.) This sampling 
needs to be accounted for in the analysis,20 but 
otherwise this design offers all the advantages and 
possibilities of a cohort study. The case-cohort 
design is intended to increase efficiency compared 
with the nested case-control design when selecting 
participants for whom additional information 
needs to be collected or when studying more than 
one outcome. 

Other Epidemiological Study 
Designs Relevant to CER

Case-Crossover Design

Faced with the problem of selection of adequate 
controls in a case-control study of triggers of 
myocardial infarction, Maclure proposed to use 
prior exposure history of cases as their own 
controls.21 For this study design, only patients 
with the outcome (cases) who have discrepant 
exposures during the case and the control period 
contribute information. A feature of this design 
is that it is self-controlled, which removes the 

confounding effect of any characteristic of subjects 
that is stable over time (e.g., genetics). For CER, 
the latter property of the case-crossover design 
is a major advantage, because measures of stable 
confounding factors (to address confounding) 
are not needed. The former property or initial 
reason to develop the case-crossover design, that 
is, its ability to assess triggers of (or immediate, 
reversible effects of, e.g., treatments on) outcomes 
may also have specific advantages for CER. The 
case-crossover design is thought to be appropriate 
for studying acute effects of transient exposures.

While the case-crossover design has been 
developed to compare exposed with unexposed 
periods rather than compare two active treatment 
periods, it may still be valuable for certain CER 
settings. This would include situations in which 
patients switch between two similar treatments 
without stopping treatment. Often such switching 
would be triggered by health events, which could 
cause within-person confounding, but when the 
causes of switching are unrelated to health events 
(e.g., due to changes in health plan drug coverage), 
within-person estimates of effect from crossover 
designs could be unbiased. More work is needed 
to evaluate the potential to implement the case-
crossover design in the presence of treatment gaps 
(neither treatment) or of more than two treatments 
that need to be compared.

Description

Exactly as in a case-control study, the first step 
is to identify all cases with the outcome and 
assess the prevalence of exposure during a brief 
time window before the outcome occurred. 
Instead of sampling controls, we create a separate 
observation for each case that contains all the 
same variables except for the exposure, which is 
defined for a different time period. This “control” 
time period has the same length as the case period 
and needs to be carefully chosen to take, for 
example, seasonality of exposures into account. 
The dataset is then analyzed as an individually 
matched case-control study.

Advantages

The lack of need to select controls, the ability to 
assess short-term reversible effects, the ability 
to inform about the time window for this effect 
using various intervals to define treatment, and 
the control for all, even unmeasured, factors that 
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are stable over time are the major advantages of 
the case-crossover design. The design can also be 
easily added to any case-control study with little  
(if any) cost. 

Limitations

Because only cases with discrepant exposure 
histories contribute information to the analysis, the 
case-crossover design is often not very efficient. 
This may not be a major issue if the design is 
used in addition to the full case-control design. 
While the design avoids confounding by factors 
that are stable over time, it can still be confounded 
by factors that vary over time. The possibility of 
time-varying conditions leading to changes in 
treatment and increasing the risk for the outcome 
(i.e., confounding by indication) would need to be 
carefully considered in CER studies.

The causal interpretation changes from the effect 
of treatment versus no treatment on the outcome 
to the short-term effect of treatment in those 
treated. Thus, it can be used to assess the effects of 
adherence/persistence with treatment on outcomes 
in those who have initiated treatment.22

Case–Time Controlled Design

One of the assumptions behind the case-crossover 
design is that the prevalence of exposure stays 
constant over time in the population studied. 
While plausible in many settings, this assumption 
may be violated in dynamic phases of therapies 
(after market introduction or safety alerts). To 
overcome this problem, Suissa proposed the case–
time controlled design.23 This approach divides 
the case-crossover odds ratio by the equivalent 
odds ratio estimated in controls. Greenland has 
criticized this design because it can reintroduce 
confounding, thus detracting from one of the major 
advantages of the case-crossover design.24 

Description

This study design tries to adjust for calendar time 
trends in the prevalence of treatments that can 
introduce bias in the case-crossover design. To do 
so, the design uses controls as in a case-control 
design but estimates a case-crossover odds ratio 
(i.e., within individuals) in these controls. The 
case-crossover odds ratio (in cases) is then divided 
by the case-crossover odds ratio in controls.

Advantages

This design is the same as the case-crossover 
design (with the caveat outlined by Greenland) 
with the additional advantage of not being 
dependent on the assumption of no temporal 
changes in the prevalence of the treatment.

Limitations

The need for controls removes the initial 
motivation for the case-crossover design and adds 
complexity. The control for the time trend can 
introduce confounding, although the magnitude 
of this problem for various settings has not been 
quantified.

 Self-Controlled Case-Series Design 

Some of the concepts of the case-crossover design 
have also been adapted to cohort studies. This 
design, called self-controlled case-series,25 shares 
most of the advantages with the case-crossover 
design but requires additional assumptions.

Description

As with the case-crossover design, the self-
controlled case-series design estimates the 
immediate effect of treatment in those treated at 
least once. It is similarly dependent on cases that 
have changes in treatment during a defined period 
of observation time. This observation time is 
divided into treated person-time, a washout period 
of person-time, and untreated person-time. A 
conditional Poisson regression is used to estimate 
the incidence rate ratio within individuals. A 
SAS macro is available with software to arrange 
the data and to run the conditional Poisson 
regression.26-27

Advantages

The self-controlled design controls for factors 
that are stable over time. The cohort design, using 
all the available person-time information, has the 
potential to increase efficiency compared with the 
case-crossover design. The design was originally 
proposed for rare adverse events in vaccine safety 
studies for which it seems especially well suited.

Limitations

The need for repeated events or, alternatively, a 
rare outcome, and the apparent need to assign 
person-time for treatment even after the outcome 
of interest occurs, limits the applicability of the 
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design in many CER settings. The assumption that 
the outcome does not affect treatment will often 
be implausible. Furthermore, the design precludes 
the study of mortality as an outcome. The reason 
treatment information after the outcome is needed 
is not obvious to us, and this issue needs further 
study. More work is needed to understand the 
relationship of the self-controlled case-series with 
the case-crossover design and to delineate relative 
advantages and limitations of these designs for 
specific CER settings.

Study Design Features

Study Setting

One of the first decisions with respect to study 
design is consideration of the population and 
data source(s) from which the study subjects will 
be identified. Usually, the general population or 
a population-based approach is preferred, but 
selected populations (e.g., a drug/device or disease 
registry) may offer advantages such as availability 
of data on covariates in specific settings. 
Availability of existing data and their scope and 
quality will determine whether a study can be 
done using existing data or whether additional 
new data need to be collected. (See chapter 8 for 
a full discussion of data sources.) Researchers 
should start with a definition of the treatments 
and outcomes of interest, as well as the predictors 
of outcome risk potentially related to choice of 
treatments of interest (i.e., potential confounders). 
Once these have been defined, availability and 
validity of information on treatments, outcomes, 
and confounders in existing databases should be 
weighed against the time and cost involved in 
collecting additional or new data. This process 
is iterative insofar as availability and validity 
of information may inform the definition of 
treatments, outcomes, and potential confounders. 
We need to point out that we do not make the 
distinction between retrospective and prospective 
studies here because this distinction does not affect 
the validity of the study design. The only difference 
between these general options of how to implement 
a specific study design lies in the potential to 
influence what kind of data will be available for 
analysis.

Inclusion and Exclusion Criteria

Every CER study should have clearly defined 
inclusion and exclusion criteria. The definitions 
need to include details about the study time period 
and dates used to define these criteria. Great care 
should be taken to use uniform periods to define 
these criteria for all subjects. If this cannot be 
achieved, then differences in periods between 
treatment groups need to be carefully evaluated 
because such differences have the potential to 
introduce bias. Inclusion and exclusion criteria 
need to be defined based on information available 
at baseline, and cannot be updated based on 
accruing information during followup. (See the 
discussion of immortal time below.)

Inclusion and exclusion criteria can also be 
used to increase the internal validity of non-
experimental studies. Consider an example in 
which an investigator suspects that an underlying 
comorbidity is a confounder of the association 
under study. A diagnostic code with a low 
sensitivity but a high specificity for the underlying 
comorbidity exists (i.e., many subjects with the 
comorbidity aren’t coded; however, for patients 
who do have the code, nearly all have the 
comorbidity). In this example, the investigator’s 
ability to control for confounding by the underlying 
comorbidity would be hampered by the low 
sensitivity of the diagnostic code (as there are 
potentially many subjects with the comorbidity 
that are not coded). In contrast, restricting the 
study population to those with the diagnostic code 
removes confounding by the underlying condition 
due to the high specificity of the code. 

It should be noted that inclusion and exclusion 
criteria also affect the generalizability of 
results. If in doubt, potential benefits in internal 
validity will outweigh any potential reduction in 
generalizability. 

Choice of Comparators

Both confounding by indication and confounding 
by frailty may be strongest and most difficult to 
adjust for when comparing treated with untreated 
persons. One way to reduce the potential for 
confounding is to compare the treatment of interest 
with a different treatment for the same indication 
or an indication with a similar potential for 
confounding.28 A comparator treatment within the 
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same indication is likely to reduce the potential 
for bias from both confounding by indication and 
confounding by frailty. This opens the door to 
using nonexperimental methods to study intended 
effects of medical interventions (effectiveness). 
Comparing different treatment options for a given 
patient (i.e., the same indication) is at the very core 
of CER. Thus both methodological and clinical 
relevance considerations lead to the same principle 
for study design. 

 Another beneficial aspect of choosing an active 
comparator group comprised of a treatment 
alternative for the same indication is the 
identification of the point in time when the 
treatment decision is made, so that all subjects may 
start followup at the same time, “synchronizing” 
both the timeline and the point at which baseline 
characteristics are measured. This reduces the 
potential for various sources of confounding and 
selection bias, including by barriers to treatment 
(e.g., frailty).8, 29 A good source for active 
comparator treatments are current treatment 
guidelines for the condition of interest.

Other Study Design 
Considerations

New-User Design

It has long been realized that the biologic 
effects of treatments may change over time 
since initiation.30 Guess used the observed risk 
of angioedema after initiation of angiotensin-
converting enzyme inhibitors, which is orders of 
magnitude higher in the first week after initiation 
compared with subsequent weeks,31 to make the 
point. Nonbiologic changes of treatment effects 
over time since initiation may also be caused by 
selection bias.8, 29, 32 For example, Dormuth et al.32 
examined the relationship between adherence to 
statin therapy (more adherent vs. less adherent) 
and a variety of outcomes thought to be associated 
with and not associated with statin use. The 
investigators found that subjects classified as more 
adherent were less likely to experience negative 
health outcomes unlikely to be caused by statin 
treatment. 

Poor health, for example frailty, is also associated 
with nonadherence in RCTs33 and thus those 
adhering to randomized treatment will appear to 

have better outcomes, including those adhering to 
placebo.33 This selection bias is most pronounced 
for mortality,34 but extends to a wide variety of 
outcomes, including accidents.31 The conventional 
prevalent-user design is thus prone to suffer 
from both confounding and selection bias. While 
confounding by measured covariates can usually 
be addressed by standard epidemiologic methods, 
selection bias cannot. An additional problem of 
studying prevalent users is that covariates that act 
as confounders may also be influenced by prior 
treatment (e.g., blood pressure, asthma severity, 
CD4 count); in such a setting, necessary control 
for these covariates to address confounding will 
introduce bias because some of the treatment effect 
is removed.

The new-user design6, 30-31, 35-36 is the logical 
solution to the problems resulting from inclusion 
of persons who are persistent with a treatment over 
prolonged periods because researchers can adjust 
for confounding at initiation without the concern 
of selection bias during followup. Additionally, 
the new-user approach avoids the problem of 
confounders’ potentially being influenced by prior 
treatment, and provides approaches for structuring 
comparisons which are free of selection bias, such 
as first-treatment-carried-forward or intention-to-
treat approaches. These and other considerations 
are covered in further detail in chapter 5. In 
addition, the new user design offers a further 
advantage in anchoring the time scale for analysis 
at “time since initiation of treatment” for all 
subjects under study. Advantages and limitations 
of the new-user design are clearly outlined in the 
paper by Ray.36 Limitations include the reduction 
in sample size leading to reduced precision of 
treatment effect estimates and the potential to 
lead to a highly selected population for treatments 
often used intermittently (e.g., pain medications).37 
Given the conceptual advantages of the new-
user design to address confounding and selection 
bias, it should be the default design for CER 
studies; deviations should be argued for and their 
consequences discussed.

Immortal-Time Bias

While the term “immortal-time bias” was 
introduced by Suissa in 2003,38 the underlying 
bias introduced by defining the exposure during 
the followup time rather than before followup was 
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first outlined by Gail.39 Gail noted that the survival 
advantage attributed to getting a heart transplant 
in two studies enrolling cohorts of potential heart 
transplant recipients was a logical consequence of 
the study design. The studies compared survival 
in those who later got a heart transplant with those 
who did not, starting from enrollment (getting on 
the heart transplant list). As one of the conditions 
to get a heart transplant is survival until the time 
of surgery, this survival time prior to the exposure 
classification (heart transplant or not) should 
not be attributed to the heart transplant and is 
described as “immortal.” Any observed survival 
advantage in those who received transplants cannot 
be clearly ascribed to the intervention if time prior 
to the intervention is included because of the bias 
introduced by defining the exposure at a later point 
during followup. Suissa38 showed that a number 
of pharmacoepidemiologic studies assessing the 
effectiveness of inhaled corticosteroids in chronic 
obstructive pulmonary disease were also affected 
by immortal-time bias. While immortal person 
time and the corresponding bias is introduced 
whenever exposures (treatments) are defined 
during followup, immortal-time bias can also be 
introduced by exclusion of patients from cohorts 
based on information accrued after the start of 
followup, i.e., based on changes in treatment or 
exclusion criteria during followup.

It should be noted that both the new-user design 
and the use of comparator treatments reduce the 
potential for immortal-time bias. These design 
options are no guarantee against immortal-time 
bias, however, unless the corresponding definitions 
of cohort inclusion and exclusion criteria are based 
exclusively on data available at start of followup 
(i.e., at baseline).40 

Conclusion

This chapter provides an overview of advantages 
and limitations of various study designs relevant 
to CER. It is important to realize that many see the 
cohort design as more valid than the case-control 
design. Although the case-control design may be 
more prone to potential biases related to control 

selection and recall in ad hoc studies, if a case-
control study is nested within an existing cohort 
(e.g., based within a large health care database) 
its validity is equivalent to the one of the cohort 
study under the condition that the controls are 
sampled appropriately and the confounders are 
assessed during the relevant time period (i.e., 
before the treatments). Because the cohort design 
is generally easier to conceptualize, implement, 
and communicate, and because computational 
efficiency will not be a real limitation in most 
settings, the cohort design will be preferred when 
data have already been collected. The cohort 
design has the added advantage that absolute risks 
or incidence rates can be estimated and therefore 
risk or incidence rate differences can be estimated, 
which have specific advantages as outlined above. 
While we would always recommend including an 
epidemiologist in the early planning phase of a 
CER study, an experienced epidemiologist would 
be a prerequisite outside of these basic designs.

Some additional study designs have not been 
discussed. These include hybrid designs such 
as two-stage studies,41 validation studies,42 
ecologic designs arising from natural experiments, 
interrupted time series, adaptive designs, and 
pragmatic trials. Many of the issues that will be 
discussed in the following chapters about ways to 
deal with treatment changes (stopping, switching, 
and augmenting) also will need to be addressed 
in pragmatic trials because their potential to 
introduce selection bias will be the same in both 
experimental and nonexperimental studies.

Knowledge of study designs and design options is 
essential to increase internal and external validity 
of nonexperimental CER studies. An appropriate 
study design is a prerequisite to reduce the 
potential for bias. Biases introduced by suboptimal 
study design cannot usually be removed during 
the statistical analysis phase. Therefore, the 
choice of an appropriate study design is at least 
as important, if not more important, than the 
approach to statistical analysis. 
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